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Abstract
Computer games in general, and Real Time Strategy games in
particular is a challenging task for both AI research and game
AI programmers. The player, or AI bot, must use its work-
ers to gather resources. They must be spent wisely on struc-
tures such as barracks or factories, mobile units such as sol-
diers, workers and tanks. The constructed units can be used
to explore the game world, hunt down the enemy forces and
destroy the opponent buildings. We propose a multi-agent
architecture based on artificial potential fields for a full real
time strategy scenario. We validate the solution by participat-
ing in a yearly open real time strategy game tournament and
show that the bot, even though not using any form of path
planning for navigation, is able to perform well and win the
tournament.
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Introduction
There are many challenges for a real-time strategy (RTS)
bot. The bot has to control a number of units performing
tasks such as gathering resources, exploring the game world,
hunting down the enemy and defend own bases. In modern
RTS games, the number of units can in some cases be up to
several hundred. The highly dynamic properties of the game
world (e.g. due to the large number of moving objects) make
navigation sometimes difficult using conventional pathfind-
ing methods. Artificial Potential Fields, an area originating
from robotics, has been used with some success in video
games. Thurau et al. has developed a game bot which
learns behaviours in the First-Person Shooter game Quake II
through imitation (Thurau, Bauckhage, and Sagerer 2004).
The behavious are represented as attractive potential fields
placed at interesting points in the game world, for example
choke points or areas providing cover. The strength of the
fields are increased/decreased by observing a human player.

Multi-agent Potential Fields
In previous work we proposed a methodology for designing
a multi-agent potential fields (MAPF) based bot in a real-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time strategy game environment (Hagelbäck and Johansson
2008b). The methodology involved the following six steps:
i) Identifying the objects, ii) Identifying the fields, iii) As-
signing the charges, iv) Deciding on the granularities, v)
Agentifying the core objects and vi) Construct the MAS ar-
chitecture. For further details on the methodology, we re-
fer to the original description (Hagelbäck and Johansson
2008b). In this paper we use the methodology to build a
bot for the full RTS game scenario.

ORTS
Open Real Time Strategy (ORTS) (Buro 2007) is a real-time
strategy game engine developed as a tool for researchers
within AI in general and game AI in particular. ORTS uses
a client-server architecture with a game server and players
connected as clients. Users can define different types of
games in scripts where units, structures and their interac-
tions are described. All types of games from resource gath-
ering to full real time strategy (RTS) games are supported.

In previous work we used the proposed methodology to
develop a MAPF based bot for the quite simple game type
Tankbattle (Hagelbäck and Johansson 2008b; 2008a). Here,
we extend the work to handle the more complex Full RTS
game (Buro 2007). In this game, two players start with five
workers and a control center each. The workers can be used
to gather resources from nearby mineral patches, or to con-
struct new control centers, barracks or factories. A control
center serves as the drop point for resources gathered by
workers, and it can produce new workers as well. Barracks
are used to construct marines; light-weight combat units. If
a player has at least one barrack, it can construct a factory.
Factories are used to construct tanks; heavy combat units
with long firerange. A player wins by destroying all the
buildings of the opponent. The game also contains a number
of neutral units called sheep. These are small indestructible
units moving randomly around the map making pathfinding
and collision detection more complex. Both games are part
of the annual ORTS tournament organised by the University
of Alberta (Buro 2007).

MAPF in a Full RTS Scenario
We have implemented a MAPF based bot for playing the Full
RTS game in ORTS following the proposed steps. Since this



work extends previous research on MAPF based bots (and
the space limitations prevents us from describing everything
in detail), we will concentrate this on the additions we have
made. For the details about the MAPF methodology and the
Tankbattle scenario, we refer to (Hagelbäck and Johansson
2008b; 2008a).

Identifying objects
We identify the following objects in our application: Work-
ers, Marines, Tanks, Control centers, Barracks, Factories,
Cliffs, and the neutral Sheep, and Minerals. Units and build-
ings are present on both sides.

Identifying fields
In the Tankbattle scenario we identified four tasks: Avoid
colliding with moving objects, Hunt down the enemy’s
forces, Avoid colliding with cliffs, and Defend the
bases (Hagelbäck and Johansson 2008b). In the Full RTS
scenario we identify the following additional tasks: Mine re-
sources, Create buildings, Train workers and marines, Con-
struct tanks, and Explore the game world. The tasks are or-
ganised into the following types of potential fields:

Field of Navigation. This field contains all objects that
have an impact on the navigation in the game world: terrain,
own units and buildings, minerals and sheep. The fields are
repelling to avoid that our agents collide with the obstacles.

Strategic Field. This field contains the goals for our
agents and is an attractive field, different for each agent type.
Tanks have attractive fields generated by opponent units and
buildings. Workers mining resources have attractive fields
generated by mineral patches (or if they cannot carry any-
more, the control center where it can drop them off).

Field of Exploration. This field is used by workers as-
signed to explore the game world and attract them to unex-
plored areas.

Tactical field. The purpose of the tactical field is to coor-
dinate movements between our agents. This is done by plac-
ing a temporary small repelling field at the next movement
position for an agent. This prevents own units from moving
to the same location if there are other routes available.

Field of spatial planning. This field helps us finding suit-
able places on the map to construct new buildings such as
control centers, barracks and factories at.

This approach has similarities with the work by Paul To-
zour in (Tozour 2004), where the author describes multiple
layers of influence maps. Each layer is responsible for han-
dling one task, for example the distance to static objects or
the line-of-fire of own agents. The different fields sum up to
form a total field that is used as a guide for the agents when
selecting actions.

Assigning charges and granularity
Each game object that has an effect on navigation or tactics
for our agents has a set of charges which generate a poten-
tial field around the center of the object. All fields gener-
ated by objects are weighted and summed to form a total
field which is used by agents when selecting actions. The
initial set of charges was hand crafted. However, the order

of importance between the objects simplifies the process of
finding good values and the method seems robust enough
to allow the bot to work good anyhow. Below is a detailed
description of each field. As in the Tankbattle scenario de-
scribed in (Hagelbäck and Johansson 2008a), we use a gran-
ularity of 1x1 game world points for potential fields, and all
dynamic fields are updated every frame.
The opponent units. Opponent units, tanks marines and
workers, generate different fields depending on the agent
type and its internal state. In the case of own attacking units,
tanks and marines, the opponent units generate attracting
symmetric surrounding fields where the highest potentials
are at radius equal to the maximum shooting distance, MSD
from the enemy unit. This is illustrated in Figure 1. It shows
a tank (black circle) moving to attack an opponent unit E.
The highest potentials (light grey areas) are located in a cir-
cle around E.

Figure 1: A tank (black circle) engaging an opponent unit
E. Light grey areas have higher potential than darker grey
areas.

After an attacking unit has fired its weapon the unit enters
a cooldown period when it cannot attack. This cooldown
period may be used to retreat from enemy fire, which has
shown to be a successful strategy (Hagelbäck and Johansson
2008a). In this case the opponent units generate repelling
fields with radius slightly larger than the MSD. The use of a
defensive field makes our agents surround the opponent unit
cluster at MSD even if the opponent units pushes our agents
backwards. This is illustrated in Figure 2. The opponent unit
E is now surrounded by a strong repelling field that makes
the tank (white circle) retreat outside MSD of the opponent.

The fields generated by game objects are different for dif-
ferent types of own units. In Figure 1 a tank is approaching
an enemy unit. A tank typically has longer fire range than
for example a marine. If a marine would approach the en-
emy unit a field where the highest potentials are closer to
the enemy unit would be generated. Below is pseudo-code
for calculating the potential an enemy object e generates in
a point p in the game world.



Figure 2: A tank (white circle) in cooldown retreats outside
the MSD of an opponent unit.

distance = distanceBetween(Position p, EnemyObject e);
potential = calculatePotential(distance,

OwnObjectType ot, EnemyObjectType et);

Own buildings. Own buildings, control centers barracks
and factories, generate repelling fields for obstacle avoid-
ance. An exception is in the case of workers returning min-
erals to a control center. In this case control centers generate
an attractive field calculated using Equation 2. The repelling
potential pownB(d) at distance d from the center of the build-
ing is calculated using Equation 1.

pownB(d) =
{

6 · d− 258 if d <= 43
0 if d > 43

(1)

pattractive(d) =
{

240− d · 0.32 if d <= 750
0 if d > 750

(2)

Minerals. Minerals generate two different types of field;
one attractive field used by workers mining resources and
a repelling field that is used for obstacle avoidance. The
potential pattractive(d) at distance d from the center of a
mineral is calculated using Equation 2. In the case when
minerals generate a repelling field, the potential pmineral(d)
at distance d from the mineral is calculated as:

pmineral(d) =
{
−20 if d <= 8
20− 2 · d if d ∈]8, 10]

(3)

Figure 3 and 4 illustrates a worker mining resources from a
nearby mine. In Figure 3 the worker is ordered to gather
more resources and an attractive potential field is placed
around the mine. Terrain, own worker units and the base
all generate small repelling fields used for obstacle avoid-
ance. When the worker has gathered as much resources it
can carry, it must return to the base to drop them off. This
is shown in Figure 4. The attractive charge is now placed in
the center of the base, and the mine now generates a small
repelling field for obstacle avoidance.

Figure 3: A worker unit (white circle) moving towards a
mine to gather resources. The mine generates an attractive
field and mountains (black) generate small repelling fields
for obstacle avoidance. Light grey areas are more attracting
than darker grey areas.

Figure 4: A worker unit (white circle) moving towards a
base to drop of gathered resources.

Field of exploration. The field of exploration is a field
with attractive charges at the positions in the game world that
need to be explored. First an importance value for each ter-
rain tile is calculated in order to find next position to explore.
This process is described below. Once a position is found,
the Field of Navigation, Equation 4, is used to guide the unit
to the spot. This approach seems to be more robust than let-
ting all unexplored areas generate attractive potentials. In
the latter case explorer units tend to get stuck somewhere in
the middle of the map due to the attractive potentials gener-
ated from unexplored areas in several directions.

pnavigation(d) =
{

150− d ∗ 0.1 if d <= 1500
0 if d > 1500

(4)

The importance value for each tile is calculated as fol-
lows:

1. Each terrain tile (16x16 points) is assigned an explore
value, E(x, y), initially set to 0.



2. In each frame, E(x, y) is increased by 1 for all passable
tiles.

3. If a tile is visible by one or more of our own units in the
current frame, its E(x, y) is reset to 0.

4. Calculate an importance value for each tile using Equa-
tion 5. The distance d is the distance from the explorer
unit to the tile.

importance(x, y, d) =2.4 · E(x, y)− 0.1d (5)

Figure 5 illustrates a map with a base and an own explorer
unit. The white areas of the map are unexplored, and the
areas visible by own units or buildings are black. The grey
areas are previously explored areas that currently are not vis-
ible by own units or buildings. Light grey tiles have higher
explore values than darker grey tiles.

Figure 5: Explore values as seen by the explorer unit (white
circle). Grey areas have previously been visited. Black areas
are currently visible by an own unit or building.

The next step is to pick the tile of the greatest importance
(if there are several equally important, pick one of them ran-
domly), and let it generate the field. This is shown in Fig-
ure 6. The explorer unit move towards the choosen tile from
Figure 5 to explore next.

Base building. When a worker is assigned to construct a
new building, a suitable build location must first be found.
The method used to find the location is described in the Spa-
tialPlanner agent section below. Once a location is found,
the potential pbuilder(d) at distance d from the position to
build at is calculated using the Field of Navigation (see
Equation 4).

The agents of the bot
Each own unit (worker, marine or tank) is represented by an
agent in the system. The multi-agent system also contains
a number of agents not directly associated with a physical
object in the game world. The purpose of these agents is to
coordinate own units to work towards common goals (when
applicable) rather than letting them act independently. Be-
low follows a more detailed description of each agent.

Figure 6: The explorer unit (white circle) move towards the
tile with the highest importance value (light grey area).

CommanderInChief. The CommanderInChief agent is
responsible for making an overall plan for the game, called
a battleplan. The battleplan contains the order of creating
units and buildings, for example start with training 5 work-
ers then build a barrack. It also contains special actions, for
example sending units to explore the game world. When one
post in the battleplan is completed, the next one is executed.
If a previously completed post no longer is satisfied, for ex-
ample a worker is killed or a barrack is destroyed, the Com-
manderInChief agent takes the necessary actions for com-
pleting that post before resuming current actions. For a new
post to be executed there must be enough resources avail-
able. The battleplan is based on the ideas of subsumption
architectures (see (Brooks 1986)) shown in Figure 7. Note
that all workers, unless ordered to do something else, are
gathering resources.

Figure 7: The subsumption hierarchy battleplan.

CommanderInField. The CommanderInField agent is re-
sponsible for executing the battleplan generated by the Com-
manderInChief. It sets the goals for each unit agent, and
change goals during the game if necessary (for example use
a worker agent currently gathering resources to construct a
new building, and to have the worker go back to resource
gathering after the building is finished). The Commander-
InField agent has three additional agents to help it with the
execution of the battleplan; GlobalMapAgent, AttackCoor-
dinator and SpatialPlanner.



Figure 8: Attacking the most damaged unit (to the left) vs.
Optimize attacks (to the right).

GlobalMapAgent. In ORTS a data structure with the cur-
rent game world state is sent each frame from the server to
the connected clients. The location of buildings are how-
ever only included in the data structure if an own unit is
within visibility range of the building. It means that an en-
emy base that has been spotted by an own unit and that unit
is destroyed, the location of the base is no longer sent in
the data structure. Therefore our bot has a dedicated global
map agent to which all detected objects are reported. This
agent always remembers the location of previously spotted
enemy bases until a base is destroyed, as well as distributes
the positions of detected enemy units to all the own units.

AttackCoordinator. The purpose of the attack coordina-
tor agent is to optimize attacks at enemy units. The dif-
ference between using the coordinator agent compared to
attacking the most damaged unit within fire range (which
seemed to be the most common approach used in the 2007
years’ ORTS tournament) is best illustrated with an exam-
ple. A more detailed description of the attack coordinator
can be found in (Hagelbäck and Johansson 2008b).

In Figure 8 the own units A, B and C deals 3 damage
each. They can all attack opponent unit X (X can take 8 more
damage before it is destroyed) and unit A can also attack
unit Y (Y can take 4 more damage before it is destroyed). If
an attack the weakest strategy is used, unit A will attack Y,
and B and C will attack X with the result that both X and Y
will survive. By letting the coordinator agent optimize the
attacks, all units are coordinated to attack X, which then is
destroyed and only Y will survive.

SpatialPlanner. To find a suitable location to construct
new buildings at, we use a special type of field only used to
find a spot to build at. Once it has been found by the Spatial
Planning Agent, a worker agent uses the Field of Navigation
(see Equation 4) to move to that spot. Below follow equa-
tions used to calculate the potential game objects generate
in the spatial planning field. Own buildings. Own build-
ings generate a field with an inner repelling area (to avoid
construct buildings too close to each other) and an outer at-
tractive area (for buildings to be grouped together). Even
though the size differs somewhat between buildings for sim-
plicity we use the same formula regardless of the type of
building. The pownbuildings(d) at distance d from the center
of an own building is calculated as:

pownbuildings(d) =


−1000 if d <= 115
230− d if d ∈]115, 230]
0 if d > 230

(6)

Enemy buildings. Enemy buildings generate a repelling
field. The reason is of course that we do not want own
buildings to be located too close to the enemy. The
penemybuildings(d) at distance d from the center of an en-
emy building is calculated as:

penemybuildings(d) =
{
−1000 if d <= 150
0 if d > 150

(7)

Minerals. It is not possible to construct buildings on top
of minerals therefore they have to generate repelling fields.
The pmineral(d) at distance d from the center of a mineral is
calculated using Equation 8. The field is slightly attractive
outside the repelling area since it is beneficial to have bases
located close to resources.

pmineral(d) =


−1000 if d <= 90
5− d · 0.02 if d ∈]90, 250]
0 if d > 250

(8)

Impassable terrain. Cliffs generate a repelling field to avoid
workers trying to construct a building too close to a cliff.
The pcliff (d) at distance d from the closest cliff is calculated
as:

pcliff (d) =
{
−1000 if d <= 125
0 if d > 125

(9)

Game world edges. The edges of the game world have to
be repelling as well to avoid workers trying to construct a
building outside the map. The pedge(d) at distance d from
the closest edge is calculated as:

pedge(d) =
{
−1000 if d < 90
0 if d >= 90

(10)

To find a suitable location to construct a building at, we start
by calculating the total buildspot potential in the current po-
sition of the assigned worker unit. In the next iteration we
calculate the buildspot potential in points at a distance of 4
tiles from the location of the worker, in next step at distance
8, and continue up to distance 200. The position with the
highest buildspot potential is the location to construct the
building at. Figure 9 illustrates the field used by the Spatial
Planner Agent to find a spot for the worker (black circle) to
construct a new building at. Lighter grey areas are more at-
tractive than darker grey areas. The location to construct the
building at is shown as a black non-filled rectangle. Once the
spot is found the worker agent uses the Field of Navigation
to move to that location.

Experiments
We used the ORTS tournament of 2008 as a benchmark to
test the strength of our bot. The number of participants in
the Full RTS game was unfortunately very low, but the re-
sults are interesting anyway since the opponent team from
University of Alberta has been very competitive in earlier
tournaments. The UOFA bot uses a hierarchy of comman-
ders where each major task such as gathering resources or



Figure 9: Field used by he Spatial Planner agent to find a
build spot (black non-filled rectangle).

building a base is controlled by a dedicated commander. The
Attack commander, responsible for hunting down and de-
stroy enemy forces, gather units in squads and uses A* for
the pathfinding. The results from the tournament are shown
in Table 1. Our bot won 82.5% of the games against the op-
ponent team over 2x200 games (200 different maps where
the players switched sides).

Team Win % Wins/games DC
Blekinge 82.5% (330/400) 0
Uofa 17.5% (70/400) 3

Table 1: Results from the ORTS tournament of 2008. DC is
the number of disconnections due to client software failures.

Discussion
There are several interesting aspects here.

• First, we show that the approach we have taken, to use
Multi-agent potential fields, is a viable way to construct
highly competitive bots for RTS scenarios of medium
complexity. Even though the number of competitors this
year was very low, the opponent was the winner (89
% wins) of the 2007 tournament. Unfortunately, ORTS
server updates have prevented us from testing our bot
against the other participant of that year, but there are rea-
sons to believe that it would manage well against those so-
lutions too (although it is not sure, since the winning rela-
tion between strategies in games is not transitive, see e.g.
Rock, Paper Scissors (deJong 2004)). We argue though
that the use of open tournaments as a benchmark is still
better than if we constructed the opponent bots ourselves.

• Second, we combine the ideas of using a role-oriented
MAS architecture and MAPF bots.

• Third, we introduce (using the potential field paradigm) a
way to place new buildings in RTS games.

Conclusions and Future Work
We have constructed an ORTS bot based on both the princi-
ples of role-oriented MAS and Multi-agent Potential Fields.
The bot is able to play an RTS game and outperforms the
competitor by winning more than 80% of the games in an
open tournament where it participated.

Future work will include to generate a battleplan for each
game depending on the skill and the type of the opponent
it is facing. The strategy of our bot is now fixed to con-
struct as many tanks as possible to win by brute strength.
It can quite easily be defeated by attacking our base with a
small force of marines before we are able to produce enough
tanks. The CommanderInChief agent should also be able to
change battleplan to adapt to changes in the game to, for ex-
ample, try to recover from an attack by a marine force early
in the game. Our bot is also set to always directly rebuild
a destroyed building. If, for example, an own factory is de-
stroyed it might not be the best option to directly construct
a new one. It might be better to train marines and/or move
attacking units back to the base to get rid of the enemy units
before constructing a new factory. There are also several
other interesting techniques to replace the sum-sumption ar-
chitecture.

We believe that a number of details in the higher level
commander agents may improve in the future versions when
we better adapt to the opponents. We do however need more
opponent bots that uses different strategies to improve the
validation.
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