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Abstract. The aim of the PsyIntEC project is to explore affective and cognitive
modeling of humans in human-robot interaction (HRI) as a basis for behavioral
adaptation. To achieve this we have explored human affective perception of rele-
vant modalities in human-human and human-robot interaction on a collaborative
problem-solving task using psychophysiological measurements. The experiments
conducted have given us valuable insight into the communicational and affective
queues interplaying in such interactions from the human perspective. The results
indicate that there is an increase in both positive and negative emotions when
interacting with robots compared to interacting with another human or solving
the task alone, but detailed analysis on shorter time segments is required for the
results from all sensors to be conclusive and significant.
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1 Introduction

The target industrial scenario of the PsyIntEC project is that of a small to medium enter-
prise engaged in rapid prototyping of novel devices. Production is typified by one-off
assemblies or small batch runs of prototypes that often go through several iterations,
customer specifications vary widely, and engineering and technical staff are few and
have both diverse tasks and highly developed expertise. The one-off or small batch pro-
totyping workshop application is one in which robot systems are not typically used, due
to the excessive time and cost of programming and hardware configuration in relation
to the small numbers of produced units.

Prototype production frequently requires much more cognitive problem solving on
the fly during production than highly pre-planned, larger scale production runs, often
with many prototype iterations investigating new components and configurations. Un-
like mass production lines, workstations need to be flexible and support human en-
gineers in performing diverse tasks for which they may have highly variable skills.



2 Johan Hagelbäck et al.

Uncertainties are much greater during prototype development, and this creates greater
emotional and attentional demands upon human workers. The PsyIntEC project focuses
upon demonstrating the feasibility of robotic guidance, support and facilitation of col-
laborative human-robot prototype production. It emphasizes support for human emotion
and attention regulation, modulation and assessment (e.g. maintaining optimum levels
of human attentional engagement in the task at hand) during cooperative human-robot
task performance, based upon the use of psychophysiology data to measure human af-
fective, emotional and cognitive states.

The first step in generating behavioral adaption in robots based on affective states
in human co-workers is to understand the affective queues present in the interaction. By
doing so, we can possibly use that knowledge to detect, and let the robot act according
to the presumed state in the interaction.

1.1 Tower of Hanoi

The Tower of Hanoi (ToH) puzzle was selected as the reference task for the study. The
reasons are that it is an easy task for a robot arm to handle, there exists an optimal
solution, and solving the puzzle is a reasonable challenge for most humans. ToH is
originally a single player game, and in collaborative gameplay the human-human or
human-robot take turns to complete the game.

ToH is a mathematical puzzle game consisting of three rods, and a number of disks
of different sizes that can slide onto any rod. The goal of the puzzle is to start from a
given configuration of the disks on the leftmost peg and to arrive in a minimal number
of moves at the same configuration on the rightmost peg. The puzzle has the following
rules [1]:

– Only one disk may be moved at a time.
– Each move consists of taking the upper disk from one of the rods and sliding it onto

another rod, on top of the other disks that may already be present there. A disk can
also be placed on an empty rod.

– No disk may be placed on top of a smaller disk - i.e., disks are only allowed to be
moved to empty rods or be placed on top of larger disks.

1.2 Hardware System

The hardware system contains two Adept Viper S650 3 6 DOF robot arms with Robo-
tiq Adaptive 2-finger Grippers 4 as end effectors. The robot arms are controlled using
an Adept SmartController CX control box and two Adept Motionblox-40-60R power
adapters. The end effectors are controlled using two Robotiq K-1035 control boxes.
An overview of the hardware platform used in the human-robot work cell is shown in
Fig. 1.

3 http://www.adept.com/products/robots/6-axis/viper-s650/general

[Accessed 27/05/2013 09:09]
4 http://robotiq.com/en/products/industrial-robot-gripper

[Accessed 27/05/2013 09:11]
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For psychophysiological measurements a Biosemi ActiveTwo 5 system with sen-
sors measuring electrocardiography (ECG), electromyography (EMG), galvanic skin re-
sponse (GSR) and electroencephalography (EEG) is used. A Microsoft Kinect camera
is used to track the moves made by a human or robot during a ToH game. A single PC
running Windows 7 is controlling the system.

Fig. 1. Overview of the hardware system.

An overview of the software system is shown in Fig. 2. The Action Module is the
core of the software system. It decides what move to make and when to make it. The
Scene Module provides information about the moves made and which player is next to
make a move. All move events (move made and timestamp for the move) are stored
to disk using the MoveLogging Module. The RobotControl Module is responsible for
executing a move. It involves how to move the robot arms to pick up and drop the
specified game disk, and when to close/release the grippers. The Scene Module uses
Microsoft Kinect SDK 6 to connect to the Kinect camera, and the EmguCV 7 (a C#
version of OpenCV) library to construct a scene of the current game state. The Robot-

5 http://www.biosemi.com/products.htm [Accessed 27/05/2013 09:12]
6 http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx

[Accessed 27/05/2013 09:14]
7 http://www.emgu.com [Accessed 27/05/2013 09:14]
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Control Module uses the Adept ACE software 8 to control the robot arms. ActiView 9

is the data recording software for the Biosemi ActiveTwo system, which all sensors are
connected to.

Fig. 2. Overview of the software system. Gray boxes are third-party libraries/modules.

1.3 Research Question and Method Overview

The goal of our study is to find out which types of sensors may be useful in creating
a human-robot workstation that uses bio-feedback to adapt to the human emotions as
measured by the sensors. Thus, our main question in this first study is to show which
psychophysiological sensors are effective in terms of measuring differences between
solving a puzzle task with or without the help of robots.

We limit this question by testing a selected set of sensors on the task of cooperatively
solving ToH. This is done by conducting experiments with four different conditions as
illustrated in Fig. 3. The first condition is a human completing the reference task alone,
the second human-human collaboration and the third and fourth human-robot collab-
oration. In the fourth condition the robot is unpredictable in terms of speed and path

8 http://www.adept.com/products/software/pc/adept-ace/general

[Accessed 27/05/2013 09:15]
9 http://www.biosemi.com/software_biosemi_acquisition.htm

[Accessed 27/05/2013 09:16]
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taken when moving the disks. In the experiments continuous measures of ECG, EMG,
GSR and EEG were recorded during the completion of the reference task. The depen-
dent variables involved quantitative measurements for evaluating task performance and
psychophysiological emotional and qualitative measurements for checking perceived
emotions.

Fig. 3. Illustration of the four conducted experiment conditions. The order varies between partic-
ipants.

2 Psychophysiological Measurements

In psychophysiological measurements, a number of different sensors can be used to
measure physiological response to emotional states. In the PsyIntEC project ECG, EMG,
GSR and EEG have been used. Below is an overview of each sensor type and how it can
be used in emotion detection.

2.1 Electromyography

Facial EMG measures voltage levels on the surface of the skin on the locations of facial
muscles involved in the generation of affective facial expressions, as an indication of
emotional valence (pleasure to displeasure). Increased activity over the cheek (zygo-
maticus major) and periocular (orbicularis oculi) muscle regions increase with positive
valence, while EMG activity over the brow (corrugators supercilii) muscle region in-
creases with negative valence and decreases with positive [2]. A study by Janke showed
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substantially reduced EMG activity associated with inwardly-directed anger, compared
with a group expressing induced anger [3]. This was interpreted as providing support
for the view of Fridlund that facial expressions of emotion express information rather
than necessarily reflect all felt emotion [4].

2.2 Galvanic Skin Response

Galvanic skin response (GSR) measures skin conductance as an indication of emotional
arousal, attention, alertness and effort. Wu et al. showed an average detection accuracy
of 45-73% for negative emotions and 62-78% for positive emotions using 30 extracted
features [5]. There is also some evidence of GSR being a relatively strong indicator
of negative emotions but fewer correlations have been found for positive emotions [6].
GSR measurements are taken from the surface of the skin, where electrical conductivity
is affected by sweat released by eccrine sweat glands in response to physiological and
emotional arousal. GSR includes short-term phasic responses to specific stimuli, and
relatively stable, longer-term tonic levels. GSR may be measured in terms of resistance,
conductance, or absolute voltage [6]. Measurements are typically taken from the palm
of the hand, the fingers, or the soles of the feet, where eccrine sweat glands are most
densely distributed, providing the strongest signal variations. One drawback with the
use of GSR in the field is its susceptibility to influences of temperature, humidity and
mechanical pressure at the points where sensors are attached.

2.3 Electroencephalography

Electroencephalography (EEG) measures electric activity of the brain that reaches the
scalp, indicating cognitive/conscious states of attention, alertness and drowsiness. The
interpretation of EEG data has largely been framed in terms of specific frequency bands
associated with different cognitive and emotional states [6]: alpha waves (8–13 Hz)
with relaxation, reflection and inhibition; beta waves (14–30 Hz) with alertness, anx-
iety, concentration, mental and physical activity; delta waves (0.5–3.5 Hz) with deep
sleep; theta waves (4–7 Hz) with drowsiness, pleasure, displeasure, idling and inhibi-
tion; kappa waves (10 Hz) with thinking; and gamma waves (resting frequency around
40 Hz, modulated by 3–5 Hz) with cross-modal perception and perceptual recognition.
Evidence suggests that stronger alpha waves in the right frontal hemisphere are associ-
ated with withdrawal (negative emotions), while those in the right frontal hemisphere
are associated with approach (positive emotions) [2].

2.4 Electrocardiography

Electrocardiography (ECG) measures the rate and regularity of heartbeats by detect-
ing the peaks of the highly positive R-waves in the signal [7]. It also measures other
things like the size and position of the heart chambers, but that is irrelevant for our pur-
poses here. A study by Malmstrom et al. used heart rate and skin conductance (GSR)
to measure arousal when watching a stressor motion picture film [8]. The study showed
a correlation with arousal, closely paralleling skin conductance variations. A study by
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Drachen et al. showed a correlation between heart rate and arousal (excitement) in video
game players [9]. Increased heart rate is a good indicator of arousal, especially for neg-
ative emotions [6]. Ya et al. showed over 90% detection accuracy of both positive (joy)
and negative (sadness) emotions for multiple subjects based on ECG recordings [10].

3 Experimental Setup

A crossover study with controlled experiments was conducted in a laboratory setting.
Lighting and temperature was controlled and the laboratory room had minimal distrac-
tion from the outside. Subjects were seated in a chair with fixed height and a prede-
fined position. The height and position were constant during all experiment sessions
in order to be able to compare the data between different sessions. Two experimenters
were always present in the laboratory room to monitor the experiments, but they were
completely hidden behind a screen and were instructed to be as quiet as possible. The
presence of the experimenters was for safety reasons when using the robot arms and
to monitor that all data were recorded correctly. Surveillance of the robot arms and
subject was done using live feed from a video camera. In addition the robot control
software included an emergency stopping sequence that would be triggered if defects
in the program execution were detected.

The GSR, EMG and ECG signals were recorded using the Biosemi ActiveTwo sys-
tem using active electrodes. The electrodes were prepared with conductive gel and at-
tached to the participant as follows:

Table 1. The placement of the electrodes used for the GSR, EMG and ECG signals.

Signal Placement

EMGC Corrugator supercilli (eyebrow)
EMGZ Zygomaticus major muscles (edge of the mouth)
ECG Sternum top (chest)

Sternum bottom (chest)
GSR Medial phalanx (middle joint on left index and ring finger)
Ground / Earlobe
Reference Zygomatic bone (cheek bone)

The EEG signals were recorded using Biosemi ActiveTwo system and Biosemi
Headcap with active electrodes 10. In the experiments EEG signals from left and right
frontal, central, anterior temporal and parietal regions (F3, F4, C3, C4, T3, T4, P3,
P4 positions according to the 10–20 system and referenced to Cz) were used, in total
eight channels. Anderson and Sijercic used 6 channels in [11], Ying et al. also used
6 channels [12] and Petrantonakis and Hadjileontiadis only used 3 channels [13]. A
Microsoft Kinect camera was used to monitor the moves made by the humans and, in
human-robot collaboration, the robot arms. The camera software stored a log file with

10 http://www.biosemi.com/products.htm [Accessed 27/5/2013 09:17]
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a timestamp for each move, which move was made, and if the move was optimal (ToH
has a mathematically optimal solution) or not.

The system used the ActiView recording software to record and store data from the
Biosemi ActiveTwo system. ActiView, the robot control software and the Kinect camera
software were running on the same computer in order to sync timestamps between the
different data files.

All experiments were recorded using a digital camcorder placed in front and to the
right of the participant and elevated to get a better overview of the experiment. The
camcorder was equipped with a microphone that provided the opportunity to record
utterances from the subject during the experiments in the attempt to model the oral
communication between the subject and experimenter or vocalizations when the subject
was alone. The same camera was also used for surveillance of the subjects and robot
arms in case of any emergency.

The experiments were carried out at the Robotics and Cognition laboratory at Blekinge
Institute of Technology, Karlskrona, Sweden. The Ethical Review Board in Lund, Swe-
den, approved all experiments (reference number 2012/737).

3.1 Experiment Procedure

A demonstration of the setup is shown in Fig. 4. It shows one of the authors sitting at
the human-robot work cell with all the sensors attached.

Fig. 4. One of the authors demonstrating the experimental setup.

Upon arrival, the participant followed a documented procedure in order to give all
participants the same treatment as far as possible:
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1. After entering the lab room each participant was seated in a fixed chair at the table
and faced the game task at 50–60 cm distance.

2. The participants were given written information about the experiment and a de-
scription explaining the Tower of Hanoi puzzle. Before starting the experiment ses-
sion, the participants played a practice ToH game with three disks in order to get
them acquainted with the task. They were also given written information explain-
ing psychophysiological measurements and that the data was stored anonymously.
When the participants agreed to take part in the experiments they signed an in-
formed consent form.

3. Before the experiment started participants filled in a questionnaire that included
questions about age, their familiarity with the Tower of Hanoi task, board games in
general, and solving mathematical problems.

4. The psychophysiological sensors measuring ECG, EMG, GSR and EEG were at-
tached. Participants were asked to relax for four minutes in order to acquire a base-
line for the psychophysiological data.

5. Each participant performed an experiment with four conditions: SH, HH, HR and
HRu. The order of the conditions was varied between participants in order to mini-
mize ordering effects. Each experiment condition was conducted as follows:
(a) The participant played a ToH game while continuous measures of psychophys-

iological data and video were recorded.
(b) After a game was finished, the participant was asked to mark his/her emotional

state on the Geneva Emotion Wheel (GEW) [14]. The purpose of GEW is to log
the subjective feelings of the subjects during the experiment period.

(c) The operator instructed the participant about what task to perform next by
showing information signs on a laptop placed next to the subject. The oper-
ator controlled the laptop using remote desktop.

For each of the four conditions, the participant played the ToH game three times
(thus in all, a total of 12 games were played for each participant). Each experiment took
around 90 minutes to complete. Note that the analysis of the GEW is out of scope for
this part of the study.

In total 70 subjects participated in the study. 58 were male and 12 female. Ages var-
ied between 19 and 31 with a mean of 23.6. The participants were students at Blekinge
Institute of Technology and were recruited by advertisement in the university corridors
and by recruiting during lectures. Each participant received a cinema ticket (worth ap-
proximately e9) for participating in the study.

4 Data Processing

The psychophysiological data was used to estimate the emotional states of each partici-
pant according to the two-dimensional valence and arousal scale. Valence, describing if
the emotion is negative, positive, or neutral, and arousal, describing the physiological
activation state of the body ranging from low to high.

Each participant data set was checked for errors. Errors were usually caused by
problems like participants that did not completely understand the rules of the ToH game,
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or failure of one or more sensors. This caused whole or parts of the data to be invalid,
for some participants. More specifically, 5% of the EMG currogator, 13.2% of the EMG
zygomatic, 17.7% of the EEG, 6.1% of GSR, and 21.4% of ECG.

The signals were recorded continuously from when the sensors were attached to the
subject and until the experiment ended. To analyze the relevant data, a segment for each
game (three games per condition x and participant i) and a segment for the baseline
period were extracted from the signals and the rest of the data (from waiting periods
between games) were discarded. The first minute of the baseline period was skipped
to remove initial non-relaxed activation in subjects. For the rest of the baseline period,
a baseline value bi,s was calculated for each sensor s. The ECG data was an exception
and was further processed to extract the heart rate before the baseline was calculated.
To compare psychophysiological data between participants several signal features were
extracted [13, 15]. The features used are mean value, minimum value, maximum value
and standard deviation.
For a condition x and a sensor s, the mean values vx,s are defined as follows:

vx,s =
1
N ∑

i∈N

1
|Gx| ∑

g∈Gx

(vi,g,s−bi,s) (1)

where N is the total number of individuals participating in the experiments, Gx is
the set of games using condition x, vi,g,s is the average of the values of sensor s in game
g with participant i, and bi,s is the baseline value for i and s. The maximum value vmax

x,s
is calculated in the following way:

vmax
x,s = max

i∈N
max
g∈Gx

(max(vi,g,s)−bi,s) (2)

The minimal value is calculated in a similar way:

vmin
x,s = min

i∈N
min
g∈Gx

(min(vi,g,s)−bi,s) (3)

We will focus on analyzing the overall mean, minimum, maximum, and standard
deviation values for each condition. Note that the minimum value is the smallest ob-
servable value in a condition, and maximum is the largest observable value. Analysis
of the first and second difference is out of scope for this part of the study. Averages
can be used to detect systematic changes over time, although it might miss specific
spikes in otherwise relative low activity since these are averaged out. To compensate
for this, minimum and maximum values were included, since the magnitudes of the
largest spikes (positive and negative) are given by these. To show an example of an
EMG zygomatic signal, see Fig 5.

5 Data Analysis

For each data segment the mean, minimum and maximum for each sensor were calcu-
lated and the baseline (average activation of the baseline period) was subtracted. A data
segment is the sensor signal data measured during one ToH game. Each subject there-
fore has three segments for each condition SH, HH, HR and HRu (three games were
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Fig. 5. A EMG zygomatic recording from one subject.

played in each condition). The mean, min and max values for all eight EEG sensors
were averaged to get single values for EEG activation.

The values for each condition were then averaged over all 70 subjects. Each condi-
tion has in total 210 data segments (70 participants and three data segments per partici-
pant). The average values over all data segments were then compared between the four
different experiment conditions. The results are presented in Table 2.

The averages that differed between the conditions were calculated using one-way
analysis of variance (ANOVA), and are presented in Table 3. A problem with this is that
ANOVA assumes that the observations should be independent of each other, which is not
the case here since the same people played all four conditions. The ordering effects are
averted (or at least minimized) by having different orders of the various conditions, but
they are still not independent of each other. To lower the risk of committing a type I error
(i.e. to detect a difference where there actually is none), the more stringent α = 0.01
was used in the analysis.

5.1 EMG Corrugator

The activity levels for the EMG sensor placed on the corrugator muscle are shown in
Fig. 6. Increased activity is a good indicator for negative valence (see Section 2.1). The
results indicate almost equal levels for SH, HH and HR with increased activity for HRu.
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Table 2. The averages of all participants’ sensor data, as well as the overall minimum and maxi-
mum for each sensor and each condition.

SH HH
Sensor Avg StdDev Min Max Avg StdDev Min Max

EMGC 1894 4311 -9055 11060 1938 4277 -9251 11947
EMGZ 1583 3540 -5308 9665 1105 3111 -6421 8502
GSR 846.8 811.8 -985.5 3447.1 1130 774.3 -525.2 3227.6
Heart rate 2.816 5.911 -11.46 21.74 2.300 5.384 -12.44 15.26
EEG 919 2431 -3937 6600 1166 2523 -3948 7687

HR HRu
Avg StdDev Min Max Avg StdDev Min Max

EMGC 1997 4051 -6443 11740 2439 4623 -7989 11966
EMGZ 1092 3555 -6931 9759 1498 3898 -6818 9853
GSR 767.7 896.6 -1281.2 3302.6 688.1 874.3 -1433.5 2791.4
Heart rate 1.427 5.783 -12.97 19.86 0.4977 4.638 -11.08 13.10
EEG 1146 2586 -3287 7425 1212 2576 -3899 7790

Table 3. One-way analysis of variance (ANOVA) for the normalized sensor values, significant
values at α = 0.01 marked with *.

Sensor Significance

EMG corrugator 0.564
EMG zygomatic 0.405
GSR 0.000*
Heart Rate 0.001*
EEG 0.716

Table 4. Post-hoc analysis using Fisher’s least significant difference for Heart Rate and GSR,
significant values at α = 0.01 marked with *.

Experiments
Sensor Experiment HH HR HRu

GSR SH 0.001* 0.348 0.062
HH 0.000* 0.000*
HR 0.345

Heart Rate SH 0.393 0.022 0.000*
HH 0.146 0.003*
HR 0.122

This may suggest that the unpredictable robot behavior can produce negative emotions.
The differences are however not significant, see Table 3.
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Fig. 6. Mean value (with confidence interval) for the EMG corrugator for the four different exper-
iment conditions.

5.2 EMG Zygomatic

The activity levels for EMG over the zygomatic muscle are depicted in Fig. 7. Increased
activity is a good indicator for positive emotions (see Section 2.1). The results indicate
equal activation levels for HH and HR and increased activity for SH and HRu. This
may suggest that playing alone compared to playing with an experimenter produces
more positive feelings, maybe due to fear of performing badly when collaborating with
an experimenter. The EMG corrugator results also indicated increased activity for HRu,
suggesting that playing with the unpredictable robot can produce both positive and neg-
ative emotions. As in the case of EMG corrugator, the differences are not statistically
significant (see Table 3).

5.3 GSR

The activity levels for the GSR sensor are shown in Fig. 8. GSR is a strong indicator
of arousal, especially for negative emotions (see Section 2.2). The results show high
activation when playing with another human (significant at the α = 0.01 level, see
Table 4), suggesting high arousal, and almost the same activity levels for the other
game types. This might be an indication of increased negative stress for subjects when
playing with an experimenter, as also indicated by the results from EMG zygomatic.

5.4 ECG

The raw ECG signal was processed to extract the heart rate activity (pulse) in beats
per minute. This is shown in Fig. 9. Heart rate activity is a good indicator of arousal
for both positive and negative valence (see Section 2.4). The results show small, but in
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Fig. 7. Mean value (with confidence interval) for the EMG zygomatic for the four different exper-
iment conditions.

Fig. 8. Mean value (with confidence interval) for the GSR for the four different experiment con-
ditions.

some cases significant differences between the conditions where the heart rate in the
single human condition is slightly higher than in the robot collaboration conditions.
There is also a significant difference in the comparison between HH and HRu, where
the subjects show a higher mean heart rate when playing together with another human,
compared to playing with the robot (see Table 4 for an overview). This is an indication
of increased arousal when playing alone or with another human, compared to playing
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with robots. This can be an indication for subjects feeling calmer when playing with
robots, relying on the robots to ”do the work”.

Fig. 9. Mean value (with confidence interval) for the Heart rate activity for the four different
experiment conditions. Note that the values are normalized w.r.t. the baseline.

5.5 EEG

The EEG activity levels averaged over all eight sensors are shown in Fig. 10. The results
indicate quite similar activity levels for HH, HR and HRu and a slightly decreased ac-
tivity for SH. This suggests that all tasks where the subject has to collaborate with either
a human or robots require increased attention and cognitive activity (see Section 2.3).
However, there are no statistically significant differences, as can be seen in Table 3.

6 Discussion, Conclusions and Future Work

The results presented in this part of the study are from playing a complete Towers of
Hanoi game. A game often lasts several minutes and averaging the activity of a sensor
over such long time periods can disguise short-term activity variations.

The two EMG sensors showed clear differences between playing alone or with an-
other human compared to the unpredictable robot. This suggest that playing with the
unpredictable robot can produce both positive and negative feelings in subjects, the
differences are however not statistically significant. It is reasonable to assume that the
differences are through spikes of activity, rather than slow changes. This would mean
that if the EMG sensors registered high activity during short periods of time, much of
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Fig. 10. Mean value (with confidence interval) for the EEG for the four different experiment
conditions.

that would be lost when averaging over the whole condition due to resting periods be-
tween the spikes. A more detailed analysis on shorter time intervals is needed to see
short-term changes in emotional states.

The EEG sensors showed increased attention and cognitive load for all collaborative
tasks, but no differences were shown between collaborating with a human or robots. As
for the EMG sensors, the differences in EEG activity are not statistically significant.

The heart rate activity showed small but significant differences between the game
types, with a decrease in activity for HRu compared to playing without robots. This
is an indication of increased arousal when playing without robots, but does not say if
positive or negative emotions were produced.

The GSR showed a significant increase in activity when playing with a human ex-
perimenter. This is a sign of increased arousal, maybe due to fear of performing badly.
It does however not say if the feelings experienced were positive or negative.

The data analysis performed cannot clearly answer the research question of what
psychophysiological sensors are effective in terms of measuring differences in affec-
tive states between solving a task with or without robots. The EMG sensors indicated
a difference but the results are not statistically significant when we look at the aver-
age values alone. The results from the heart rate and GSR sensors were significant but
showed no clear difference between playing with or without robots. The EEG sensors
might be indicators of collaborative or non-collaborative tasks. Analysis of the other
features (first and second difference) and on shorter time intervals is needed to better
answer the research question and these interesting analysis will be future topics of re-
search. Our results do however give indications that EMG for valence and GSR/heart
rate for arousal are effective in measuring affective states in human-robot interaction.
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A possible future work is to cut the data into one segment for each move to be
able to do analysis for shorter time intervals. This will show the activity levels in more
detail and may give insights into how affective states change throughout a game. There
is also the possibility of analyzing the video recordings (video and sound) to see when
participants show emotions and do detailed analysis of the data from those time periods.

Another possible future work is to correlate the psychophysiology data to the sub-
jective feelings of participants as stated in the GEW forms. This could give valuable
insights into whether participants that subjectively felt stressed in the human-robot in-
teraction also experienced increased psychophysiological activity and therefore possi-
bly show stronger correlations in the data between playing with or without robots.

The next step in the PsyIntEC project is to develop a human cognition and affect
model (a form of knowledge base) based on the experiment results. The model will have
real-time automated state updates based upon data inputs from biometric interfaces. The
purpose is to detect changes in affective states in the human co-worker. An analysis of
the data on shorter time intervals is needed to develop this model.

The cognition and affect model will then be used to develop an adaptive robot de-
cision model to complete reference tasks while optimizing human safety, job satisfac-
tion/engagement and task performance. Robot performance parameters will be modified
in real time based upon the human affect model.

A future experiment is planned to compare the human affective perception of the
adaptive robot decision model compared to the human-robot and human-robot unpre-
dictable conditions used in the experiments described in this part of the study.
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